Human Beta Defensins-3 Gene Expression in Epithelial Cell and Neutrophils for Children with Leukemia before and after Treatment

Hanana S. Makii1, Awatif H. Issa2* and Abdullah H. Al Saadoon2

1Basra Children Specialty Hospital, Basra Province, Iraq
2Biology Department, College of Science, University of Basrah, Basra, Iraq.

Accepted 24th December, 2017.

Human β-defensin-3 (HβD-3) is the most interesting member of the antimicrobial peptide family. It has a broad spectrum of antimicrobial peptide activity against bacterial, fungal, and some viral infections. HβD-3 gene expression was detected in about 60 specimens from 15 patients before and after chemotherapy for each neutrophil and epithelial cell used for the study of HβD3 gene expression. Control samples were 5 patients without chemotherapy suffering from different diseases such as oropharyngitis, tonsillitis, esophagitis and other inflammations. Acute Lymphoblastic Leukemia (ALL) was the most prevalent among patients with leukemia. HβD-3 expression in epithelial cell (buccal mucosa) and neutrophils before chemotherapy and after chemotherapy (induction phase) was determined.

Keywords: HβD-3 expression, Molecular identification, Oral cavity, Leukemia patients.

INTRODUCTION

Defensins are highly spread in cells and tissues related with host defense against microbial agents. (Raj and Dentino, 2002). Defensins are considered as the largest antimicrobial peptide group in mammals (Ganz, 2003; Lehrer, 2004; La and Gallo, 2009; Zhu and Gao, 2013). HβD-3 consists of 45 amino acid residues, cationic peptide and the charged residues are distributed asymmetrically. They exist in most eukaryotic kingdoms referred to a common ancestor (Pazgiera et al., 2006; Clarke et al., 2006 and Domingues et al., 2014).

HβD-3 has a low sequence similarity among β-defensin class of peptides (Boniotto et al., 2003). This peptide is isolated and characterized from psoriatic scales then classified as an individual of beta-defensins family of peptide (Harder et al., 2005). HβD-3 induced expressions are found in different sites of the body, where high levels are observed in the trachea, tonsil, tongue, skin and low expression level in salivary gland, stomach, uterus, pharynx, and other sites by the use of real time-polymerase chain reaction (Dunsche et al., 2002).

Additionally defensins are representing endogenous antibiotic agents that give chemically protection for the mucosal surface, and their relative decrease may cause microorganisms adherence to the epithelial surface, the slow invasion of microbial infection into tissues, and secondary inflammation for mucosal cells (Fellermann et al., 2006). Several studies have been conducted on expression of human beta-defensin-3 including the study by Harder et al., (2001) in Kiel city, Germany in which the isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic was carried out. A study by Beverly et al., (2005) conducted in the USA has shown the expression and function of antimicrobial Peptides innate immune responses in the oral cavity in addition to regulation of β-defensins which has an important role in oral epithelial innate immunity.

In another study by Dhople et al., (2006) in the University of Michigan, USA, the role of hβD-3 as an antimicrobial peptide with multiple biological functions including immune modulatory function, tissue reorganization and wound healing was shown. Silva et al., (2014) in their study conducted in Portugal and focus of intense research toward the defensins, as other AMPs, have shown to be an effective alternative to the current antymycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. While the study by Lee RM et al., (2015) conducted in the United Kingdom showed that defensin copy number variation is an important contributor to maximizing the host innate and adaptive response.

The cancer patients have low host defense immunity, when immune response systems are suppressed resulting from administered chemotheraphy such as individuals with leukemia which can be defined as cancer of the early blood-forming cells. And the study revealed that the leukemia was more

*Corresponding Author: Awatif H. Issa. Basra Children Specialty Hospital, Basra Province, Iraq. Email: awatifhi@gmail.com
frequent in the age group 2-4 Valera et al., (2015). Acute lymphoblastic leukemia (ALL), a malignant disorder of lymphoid progenitor cells, is the most common type of leukemia among children, accounting for 75% of all childhood leukemia (Yeoh et al., 2013; Wang et al., 2014 and Girish Babu et al., 2016).

MATERIAL AND METHODS

Patients and Specimens

This study was conducted at Basra children specialty hospital, Basra province, Iraq from August 2016 to June 2017. The specimens were collected from children before and after (4-6 weeks) receiving chemotherapy. About 60 specimens from 15 patients before and after chemotherapy for each neutrophil and epithelial cell were used for study of HβD-3 gene expression. Control samples were 5 patients without chemotherapy (2 males and 3 females) suffering from different diseases such as oropharyngitis, tonsillitis, esophagitis and other inflammations. In addition, both groups were examined for signs and symptoms of oral infections.

Collection of Specimens

In this study two types of specimens were collected: (1) whole blood collected in EDTA tube was used for RNA extraction. (2) swab of buccal mucosa epithelial cell was used for RNA extraction.

Type of chemotherapy treatment

According to Basra Children specialty Hospital, Oncology Center, the therapeutic protocol used in the treatment of patients with leukemia, which includes a number of chemical treatments given to the patient with a certain dose by age and weight for each patient and these treatments include:

Vincristen 1.5 mg /m², Daunorubicine 30 mg/m², L-asparaginase 5.000 U/ m²
Cyclophosphamide 1.000 mg/m², Mesna 400 mg/ m²,
Cytarabine 75 mg/m²
6-Mercaptopurine 60mg/m², Prednisone 60mg/ m² and Methotroxate 6 - 12 mg / m², according to age from less than one year into more than 3 years.

Molecular methods

Total RNA Extraction: After collecting the specimens (epithelial cell and whole blood), RNA extraction was initiated immediately because of the RNA rapid degradation via RNase enzyme. In this study, the commercial manual kit called AccuZol from Bioneer Company was used. This kit was used for total RNA isolation according to manufacturer's protocol. The RNA preparation was dissolved in 50 - 100 µl RNase free water depending on the size of pellet. And before the solution was stored at -70 °C the concentration of RNA samples were measured by Nanodrop device (Optizen popNano Bio).

RT-PCR: Total RNA was converted into cDNA by the use of Accupower Rocket Script RT PreMix kit from Bioneer company as follows: Template RNA, DEPC water and oligo dT15 primer were thawed before use. And 5µl of total RNA, 2 µl of oligo dT15 and 13 µl of DEPC water were added into the Accupower Rocket Script RT PreMix tubes and the reaction was performed under the following conditions. Primer annealing at 30 OC for 10 min, cDNA synthesis at 42 °C for 45min and heat inactivation at 95 OC for 5 min. The synthesized cDNA was then amplified by RT-q PCR using specific sense F 5- AGGCTAGAGCTATGAGGATG-3 and antisense primers R 5-CTTCGCGCATTGTTGCGCA-3 for the genes of interest (HβD3 gene) with a housekeeping gene (β-actin) sense F5- CTCCTTTAATGTCCAGGATTTC-3 and antisense R 5- GTGGGGCGGGCCAGGACA-3 (Scheerden, J., et al., 2001). Which were provided by Alpha DNA Company. Samples were loaded into Green Start q PCR PreMix tube that contains SYBER Green l dye which is used to detect PCR product in real-time monitoring by using the protocol Exicyclety 96 (Bioneer.com), for an initial denaturation at 95.00 °C for 10 min, followed by 45 cycles, each cycle consisting of 95.00 °C for 10 sec, 60.00 °C for sec, and 72.00 °C for 10 sec. At the end of each run, melting curve profiles were produced.

Statistical Analysis: Statistical analysis of data was carried out by using the t-test sample (paired samples test and paired samples correlation) with differences at P<0.05 which is considered to be statistically significant. This calculation was carried out according to the Statistical Package for Social Science (SPSS version 20) and the least significant difference at a level less than (0.05).

RESULTS AND DISCUSSION

This study was conducted on about 15 children patients with leukemia before and after chemotherapy for each neutrophil and epithelial cells used for HβD-3 study, and the range of their age between (2-16 years). The study revealed that the leukemia was more frequent in the age group 2-4 (40%). While the age group 14-16 (6%) was the less frequent (see Table1).

The frequency of leukemia particular type Acute Lymphoblastic Leukemia (ALL) in children patients was more than leukemia type Acute Myeloid Leukemia (AML) that agrees with (Yeoh et al., 2013; Wang et al., 2014 and Girish Babu et al., 2016). The results of the current study showed that most of the children patients in both cases before and after chemotherapy were suffering from neutropenia that increases invading opportunistic infections in immune suppression patients.

Recent study had shown an increase of immunocompromised patients that result from increased levels of chemotherapy, radiation, high doses of corticosteroids, individuals with diabetes mellitus and HIV which inhibit the immune system (Teoh and Pavelka 2016). Expression of hβD-3 in neutrophils of children patients before chemotherapy was (0.865195) with significant difference (P< 0.05) and this value decreased to (0.087716) after chemotherapy with no significant difference (P> 0.05) and there was highly correlation between the expression of hβD-3 in neutrophils of children patients before and after chemotherapy because most children patients with leukemia in this study were suffering from neutropenia before chemotherapy and increased number patients with neutropenia after chemotherapy, when the number of absolute neutrophils count was less than 500 cell /mm³, this results was consistent with Paus et al., (2013) Figure (1).

The expression of HβD-3 gene in epithelial cells of children patients before chemotherapy was (0.382182). Even with low level of hβD-3 expression, the bacteria and yeasts were isolated from the oral cavity (Alsaadoon et al., 2017 and Makii 2017).

www.donnishjournals.org
Table 1: Description of the HβD-3 study pattern for patients at Basra children specialty hospital

<table>
<thead>
<tr>
<th>Age classes</th>
<th>Patients with leukemia from n=15 patients, about 60 specimens before and after chemotherapy for each neutrophils and epithelial cells used for HβD-3 study</th>
<th>Patient with inflammation As control n= 5 used for HβD-3 study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>2-4</td>
<td>6</td>
<td>40%</td>
</tr>
<tr>
<td>5-7</td>
<td>4</td>
<td>27%</td>
</tr>
<tr>
<td>8-10</td>
<td>4</td>
<td>27%</td>
</tr>
<tr>
<td>11-13</td>
<td>/</td>
<td>0%</td>
</tr>
<tr>
<td>14-16</td>
<td>1</td>
<td>6%</td>
</tr>
</tbody>
</table>

Mean ±SD: 3± 2.449, 2.5±2.1232
Range: 2- 16, 2- 8

<table>
<thead>
<tr>
<th>Sex</th>
<th>Type of leukemia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>ALL %</td>
<td>AML %</td>
</tr>
<tr>
<td>10</td>
<td>67%</td>
<td>2%</td>
</tr>
<tr>
<td>Female</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>2%</td>
</tr>
</tbody>
</table>

n=15 Patient with leukemia used for HβD-3 study, n =5 patient without leukemia (with inflammation) was used as control for HβD-3 study, **ALL**: Acute Lymphoblastic Leukemia, **AML**: Acute Myeloid Leukemia.

Table 2: Statistical analysis of HβD-3 gene expression for children calculated twice before and after chemotherapy.

<table>
<thead>
<tr>
<th>No.</th>
<th>Type sample</th>
<th>Correlation coefficient</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HβD-3 expression for Epithelial cell</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>HβD-3 expression for Neutrophils</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

P > 0.05 No significant difference

Figure 1: Relative expression of HβD-3 gene before and after chemotherapy.

P < 0.05 Significant difference for HβD-3 expression for neutrophils before chemotherapy,
P > 0.05 No significant difference for HβD-3 expression for neutrophils after chemotherapy,
Epithelial cells before and after chemotherapy.
The expression of hβD-3 gene in epithelial cells was increased after patients received chemotherapy up to (0.457338), and this simple shift in amount of expression hβD-3 gene between before and after chemotherapy may be caused from dose of chemotherapy during induction phase (4 - 6 weeks) this results is consistent with Paus et al., (2013) which exhibited detrimental effect for chemotherapy on epithelial layer.

From another side this increased of hβD-3 gene expression in the epithelial cell after chemotherapy was accompanied by an increase in Candida species practically Candida albicans in the oral cavity. So this result is consistent with Dhople et al., (2006) that state increase in mRNA levels of hβD-3 observed when oral epithelial cells were challenged with C. albicans, with high correlation between epithelial cells expression before and after chemotherapy with no significant difference (P> 0.05) (see Table 2).

CONCLUSION

The current study of children with leukemia at Basra children specialty hospital showed that there was agenetic expression for hBD-3 in epithelial cell (buccal mucosa) in the oral cavity and genetic expression for hBD-3 in neutrophils before and after chemotherapy were less than expression for control sample patient (epithelial cell and neutrophils) before and after chemotherapy. Finally this study demonstrates that there is a relationship between genetic expression of hBD-3 in epithelial cell and neutrophils.

ACKNOWLEDGMENT

The authors represent deep thanks to all the children suffering from leukemia at the Basra specialist child hospital and to their parents for allowing us to take samples from their children despite the suffering of the severe disease. Also we like to thank everyone who helped us during this study.

REFERENCES

A study of host defence peptide β-defensin 3 in primates, Biochem. J. 374 707–714.

www.donnishjournals.org

